Variations on Descents and Inversions in Permutations
نویسنده
چکیده
We study new statistics on permutations that are variations on the descent and the inversion statistics. In particular, we consider the alternating descent set of a permutation σ = σ1σ2 · · · σn defined as the set of indices i such that either i is odd and σi > σi+1, or i is even and σi < σi+1. We show that this statistic is equidistributed with the odd 3-factor set statistic on permutations σ̃ = σ1σ2 · · · σn+1 with σ1 = 1, defined to be the set of indices i such that the triple σiσi+1σi+2 forms an odd permutation of size 3. We then introduce Mahonian inversion statistics corresponding to the two new variations of descents and show that the joint distributions of the resulting descent-inversion pairs are the same, establishing a connection to two classical Mahonian statistics, maj and stat, along the way. We examine the generating functions involving alternating Eulerian polynomials, defined by analogy with the classical Eulerian polynomials ∑ σ∈Sn tdes(σ)+1 using alternating descents. For the alternating descent set statistic, we define the generating polynomial in two non-commutative variables by analogy with the ab-index of the Boolean algebra Bn, providing a link to permutations without consecutive descents. By looking at the number of alternating inversions, which we define in the paper, in alternating (down-up) permutations, we obtain a new q-analog of the Euler number En and show how it emerges in a q-analog of an identity expressing En as a weighted sum of Dyck paths.
منابع مشابه
Unimodal Permutations and Almost-Increasing Cycles
In this paper, we establish a natural bijection between the almost-increasing cyclic permutations of length n and unimodal permutations of length n − 1. This map is used to give a new characterization, in terms of pattern avoidance, of almostincreasing cycles. Additionally, we use this bijection to enumerate several statistics on almost-increasing cycles. Such statistics include descents, inver...
متن کاملNormal Approximations for Descents and Inversions of Permutations of Multisets
Normal approximations for descents and inversions of permutations of the set {1, 2, . . . , n} are well known. We consider the number of inversions of a permutation π(1), π(2), . . . , π(n) of a multiset with n elements, which is the number of pairs (i, j) with 1 ≤ i < j ≤ n and π(i) > π(j). The number of descents is the number of i in the range 1 ≤ i < n such that π(i) > π(i + 1). We prove tha...
متن کاملWidth-k Generalizations of Classical Permutation Statistics
We introduce new natural generalizations of the classical descent and inversion statistics for permutations, called width-k descents and width-k inversions. These variations induce generalizations of the excedance and major statistics, providing a framework in which well-known equidistributivity results for classical statistics are paralleled. We explore additional relationships among the stati...
متن کاملLocal extrema in random trees
The extension of permutation statistics to labelled trees is the subject of a number of articles. Generating functions for the number of labelled trees of several types according to the number of ascents and descents are given in [4]. A functional equation satisfied by the generating function for the number of labelled trees according to the number of descents and leaves is given in [5]. Centra...
متن کاملInversion-descent polynomials for restricted permutations
We derive generating functions for a variety of distributions of joint permutation statistics all of which involve a bound on the maximum drop size of a permutation π, i.e., max{i−π(i)}. Our main result treats the case for the joint distribution of the number of inversions, the number of descents and the maximum drop size of permutations on [n] = {1, 2, . . . , n}. A special case of this (ignor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 15 شماره
صفحات -
تاریخ انتشار 2008